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Abstract:

Geolocation estimation from images is a challenging task that
can predict the geographical location of a photo using only its
visual content. This is particularly difficult because photos
often lack metadata, and their visual features can vary due to
environmental conditions, lighting, and time of year.
Applications for this technology include photo organization,
disaster response, and environmental monitoring, where
location information plays a critical role.

Our project introduces a new deep learning framework that
combines adaptive spatial partitioning and scene
classification to improve geolocation accuracy. To address
the complexity of Earth’s surface, we apply the

S2 geometry library3 to create an adaptive quadtree
structure that divides the Earth into hierarchical geographical
nodes. This method ensures a balanced distribution of image
density across spatial partitions, allowing finer divisions in
well-photographed areas and coarser divisions in sparsely
captured regions.

To enhance location prediction, we use scene classification to
pre-train ResNet model trained on the Places?2 dataset,
which contains 365 scene categories. Each image is assigned
scene labels at multiple levels of granularity: fine-grained
(365 categories), mid-level (16 groups), and coarse-level (3
types: indoor, natural, and urban). This hierarchical
classification bridges detailed scene understanding with
broader contextual information, enabling our framework to
leverage both fine and coarse cues for geolocation.

The framework operates through four key stages to enhance
geolocation accuracy. First, adaptive region partitioning uses
S2-based hierarchical subdivision to create spatial nodes with
a balanced number of images. Second, we apply scene
classification to add geolocation predictions by incorporating
environmental semantics. Third, multi-scale learning refines
predictions across coarse, medium, and fine spatial scales to
improve precision. Lastly, hierarchical geolocation prediction
determines precise GPS coordinates by calculating the mean
location of training images within the predicted region.g

Our evaluation uses the IM2GPS Test Set, which contains
images from diverse global locations, including urban
landmarks, natural landscapes, and architectural scenes.
Experimental results demonstrate significant improvements
in geolocation accuracy, particularly for visually distinct
areas. Thus, the adaptive partitioning minimizes biases by
searching areas with more photos.
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Figure 1. Geographical Error Distribution in im2gps3k dataset

Figure 1 illustrates the geographical error distribution for our
geolocation estimation model. Most errors are concentrated
in lighter shades, which indicates lower distance errors in
most regions. Our results demonstrate that our trained model
performs well in accurately localizing images across densely
photographed areas, indicating that combining spatial
partitioning, scene classification, multi-scale learning, and
hierarchical spatial information can create a reliable and
scalable method for image-based geolocation estimation.

1. Introduction

1.1 Problem Statement

Predicting where a photo was taken just from its visual
features is no small feat. Without any clear metadata, an
image can look completely different depending on the
weather, time of day, or season conditions. Plus, our planet is
huge and diverse—ranging from metropolises to remote
natural landscapes—so identifying a location isn’t
straightforward without some extra context. If we can get a
closed or even correct answer, it will be helpful in multi areas
like photo organization, disaster response, environment
monitoring, and etc.



1.2 Motivation

With the rapid growth of visual data on social media,
photo-sharing platforms, and surveillance systems, there is an
increasing need for reliable methods to determine where a
photo was taken. While traditional methods rely on GPS
metadata, such information is often unavailable or
intentionally removed for privacy reasons. To deal with this,
we use classical methods and deep learning models as
powerful tools for extracting meaningful patterns from visual
data to infer location. However, existing methods often
overlook the importance of environmental context, such as
whether an image depicts natural scenery, urban settings, or
indoor spaces, which can provide valuable clues for
geolocation. By integrating scene classification with
hierarchical spatial partitioning, we believe our approach
could bridge this gap and improve the precision of location
predictions using only visual cues.

1.3 Related Work

We draw inspiration from the long history of predicting a
photo’s location using visual content, beginning with
Im2GPS by Hays and Efros [4]. Im2GPS matched a query
image to a database of geotagged images to estimate the
location. Although this retrieval-based approach could work
well for landmarks, it struggled with generic or blurry images
that lacked distinctive features. Building on this, Weyand et
al. introduced PlaNet [11], which turned geolocation into a
classification problem. The idea of PlaNet is to divide the
Earth into adaptive region nodes, ensuring balanced data
distribution across regions. However, PlaNet still faced
challenges when dealing with images from underrepresented
or ambiguous regions.

To address the limitations, Vo et al. revisited Im2GPS and
introduced a multi-scale partitioning approach [10]. By
combining information from coarse, medium, and fine
geographic partitions, this method allowed models to refine
their predictions using both global and local features. This
idea strongly influenced our work, where we also adopt
multi-resolution partitioning to improve accuracy.

Another key advancement is the use of scene context, which
helps models understand the type of environment shown in
an image. Zhou et al. introduced the Places2 Dataset [13], a
large collection of images labeled into 365 scene categories,
such as indoor, natural, and urban environments. These
hierarchical labels bridge low-level image features and

geographic information. Inspired by this, our framework uses
scene classification to incorporate environmental context,
making geolocation predictions more precise.

Our work is also influenced by hierarchical classification
methods like YOLO9000 (Redmon and Farhadi, 2017) [5].
YOLO9000 successfully combined coarse and fine object
categories to improve detection, and we apply a similar idea
to geolocation by combining spatial probabilities from
different scales. Building on this, we introduce
Context-Specific Networks (CSNs)(introduced in section
2.3), which are tailored to predict geolocations based on
specific scene types, such as indoor environments or natural
landscapes.

1.4 Approach summary
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Fig2. Geolocation estimation workflow.

Our geolocation prediction framework makes GPS
estimation by integrating hierarchical spatial partitioning,
deep learning, and contextual insights. In the first step, we
organize raw image data by splitting the Earth into a
hierarchy of geographically balanced regions using S2
geometry and quadtree structures to balance image density
across regions. Next, we use these regions to classify each
image using deep neural networks to identify the type of
scene and give them several tags. Finally, we adopt a
multi-scale learning strategy. At larger scales, we capture
broad patterns, while at finer scales, we zoom in for more
detailed, context-specific insights. Together, the
hierarchical partitioning, scene-aware classification, and
multi-scale refinement create a flexible framework that



adapts to diverse environments. Figure 2 shows the
workflow of our approach.

2. Details of the approach:

Our core idea is to divide the Earth's surface into adaptive
spatial regions, ensuring that each region contains a balanced
number of images. By using this adaptive partitioning, we
aim to mitigate biases and improve the precision of location
predictions. To enhance the framework, we use the visual
content of images to extract information about their
surroundings. Specifically, each image is assigned a scene
label from a set of 365 categories derived from the Places2
dataset, which captures diverse environmental scenarios.

Building on this foundation, we incorporate strategies to
integrate both the scene-based information and multiple
spatial partitioning levels to improve accuracy. These
strategies enable the framework to consider a variety of
spatial resolutions and scene contexts, ensuring more reliable
geolocation predictions. To determine the location of an
image, our approach combines predictions across different
levels of granularity, resulting in a hierarchical estimation of
GPS coordinates.

2.1 Region Node Partitioning

To generate a set of distinct geographical region nodes C, we
utilize the S2 geometry library3. The process starts by
projecting the Earth’s surface onto a cube, where each face
represents an initial node. Using the GPS coordinates of the
images, the nodes are adaptively divided in a hierarchical
approach. With a quadtree structure, subdivision begins at the
root and continues until no node contains more images than
the specified maximum threshold T

Hierarchical Subdivision:

The adaptive partitioning begins with coarse-level nodes,
representing large geographical areas. Each node is
subdivided into four smaller nodes (quadtree structure) until
the number of images in every node is less than or equal to

T .
max

Filtering Sparse Nodes:
Nodes containing fewer than L images are removed to

exclude regions with limited distinguishing features, such as

poles or oceans. To address edge cases, where images are
located near the boundaries between dense and sparse nodes,
we implement a series of additional checks to ensure proper
allocation. Images at these boundaries are evaluated based on
their geographical proximity and feature similarity to
neighboring dense nodes. If an image is closer to or better
matches the characteristics of a dense node, it is reassigned
accordingly. This reassignment would ensure that edge
images contribute to meaningful regions while preserving a
balanced node representation.
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Figure 3. Distance Threshold Results for Different Partition Levels

Figure 3 presents a comparison of geolocation accuracy
under various region node partitioning strategies across
different distance thresholds. The results evaluate the base
approach with and without additional subdivisions, using the
coarse, middle, and fine partitioning levels. The base method
serves as the reference and its accuracy is displayed at the
center of the x-axis for each threshold. It can be observed that
finer subdivisions improve accuracy at smaller distance
thresholds, while coarser partitions tend to perform better at
larger thresholds. This demonstrates the trade-off between
partition granularity and geolocation precision.

Benefits of the Region Node Partitioning

The adaptive region partitioning method offers clear benefits
over dividing the Earth's surface into equal areas. It avoids
creating large regions in places with few photos and small
regions in areas with many photos. We improve geolocation
accuracy by focusing on areas with dense images, especially
for landmarks and urban locations.



2.2 Hierarchical Scene Classification for Visual
Context

ResNet Architecture:

We use a ResNet model with 50 layers as the backbone for
scene classification. The model is trained on the Places?2
dataset [13]with 365 scene categories. Its ability to
differentiate between diverse environments aligns with the
objectives of our geolocation estimation framework.

Scene Label Assignment:
The model computes probabilities P (Cz) for each of the 365

categories c € S 365" Scene labels are assigned using the

highest-probability category:

Label(x) = max__. P(ci)
i 365

Hierarchical Scene Grouping:
The provided scene hierarchy groups the 365 categories into
16 superordinate groups S 16 and 3 broader categories S 5

indoor, natural (outdoor, natural), and urban (outdoor,
man-made). Probabilities for each group are calculated by
summing the probabilities of all classes within the group. The
final label is selected based on the highest aggregated
probability.

Handling Overlapping Categories:

Some categories belong to multiple superordinate groups,
such as natural outdoor and man-made outdoor. To
normalize, the probability of these categories is divided by
the number of their assigned groups. The normalization
enhances the model's interpretability by fairly distributing
probabilities across overlapping groups. It also improves
accuracy by preventing one category from overly influencing
predictions.

We believe hierarchical classification can 1) enhance
geolocation accuracy by extracting scene semantics at
multiple levels, 2) link fine-grained scene features to broader
environmental categories, and 3) provide richer contextual
information.

2.3 Location Prediction Framework
We implemented a deep learning-based framework that

integrates 1) hierarchical spatial partitioning from Section
2.2, 2) multi-scale learning, and 3) scene-aware context. By

using convolutional neural networks(CNNs), we combine
global and local spatial information while incorporating
environmental context to improve prediction accuracy.

Basic Predictor

The foundation of our location prediction system is a
single-resolution classifier that uses only the single region
node partitioning as described in Section 2.1. We employed a
ResNet-based CNN to extract hierarchical features from
input images. The network includes convolutional layers,
batch normalization, ReLU activations, and residual
connections. Then we added a global average pooling layer,
followed by a fully connected layer that outputs class
probabilities for the geographical cells. The number of
neurons in the layer corresponds to the total number of region
node R.

To train the model, we optimized a cross-entropy loss
function, minimizing the difference between predicted
probabilities and the ground-truth labels:
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where Ri is the predicted probability of region node i, and

R?T is the one-hot encoded ground-truth label.

Multi-Scale Learning Framework

To capture information at multiple spatial levels, we extended
the basic predictor model with a multi-scale learning
framework. This multi-scale learning framework can learn
geolocation features at multiple spatial resolutions such as
coarse, medium, and fine scales, which enables the network
to integrate information at different levels of granularity.

We implemented additional fully connected layers for each
spatial scale, where each layer outputs class probabilities for
its corresponding region nodes. We calculated the
multi-partitioning classification loss as the average of the
cross-entropy losses across all scale:

multi 1
™t ==
loc n

]

Lsingle (R )
J

loc

I'™M =

1

where n is the number of spatial resolutions and Rj represents

the region nodes for each partitioning. The model can now



simultaneously learn global and local spatial features and the
effect is discussed later in Section 4.4.

Context-Specific Networks

To further enhance predictions, we integrate the
environmental scene context into our multi-scale learning
framework, using what we call Context-Specific
Networks(CSNs). Each CSN specializes in a particular type
of scene (e.g, either indoor, urban, or natural), thereby
reducing the complexity of geolocation feature learning by
narrowing the focus to specific scenarios.

The process begins with scene classification as outlined in
Section 2.2. A pre-trained scene classifier assigns
probabilities S for each scene type. Images with a scene
probability greater than a threshold t g are used to train the

corresponding CSN.

To reduce the diversity in the data space, we fine tuned
models initially trained without scene restrictions using
images specific to a given environmental category S . (

k € {indoor, natural, urban}). For example, an urban
CSN learns features relevant to cityscapes, and a natural CSN
focuses on landscapes like forests and mountains.

For query images, the scene classifier first predicts the most
likely scene type. Based on this prediction, the corresponding
CSN is selected to perform geolocation. Each CSN produces
region probabilities across all spatial scales, which are further
refined hierarchically(Section 2.4) to improve the final
prediction.

2.4 Hierarchical Geolocation Prediction with
Multi-Scale Spatial Representation

Built upon the framework introduced in Section 2.3, we
enhance our prediction stability by applying the trained
model on three evenly sampled crops of a query image. The
technique reduces noise by managing differences in image
orientation and content and averaging class probabilities from
these crops. We believe this can balance stability and
efficiency and provide enough coverage to ensure reliable
predictions without increasing too much processing time.

Using the multi-partitioning described in Section 3.3,
calculated class probabilities at multiple spatial resolutions.
For each query image, the class with the highest probability
is selected, and the corresponding geographical region is

assigned. Since it includes both detailed and broad spatial
information, we thought combining probabilities from all
levels can help us make predictions more accurate.

Hierarchical Spatial Framework

In order to make every geographical region in the finest
partition hierarchically linked to a larger parent area, we use
the adaptive subdivision threshold introduced in Section 2.1.
These methods create a geographical hierarchy spanning
multiple spatial resolutions. Inspired by YOLO9000’s
hierarchical classification approach [5], we multiply the
probabilities at each level of the hierarchy. As a result, we
believe this can make coarser level predictions to refine the
results for finer subdivisions.
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Fig4. Coarse-level distribution(top) and fine-level
distribution(bottom)

In figure 4, two charts represent the distribution of classes at
two different levels of granularity in our hierarchical
geolocation model: coarse and fine. This highlights the
hierarchical structure of our model, with coarse level nodes
capturing border regions and fine level nodes providing
detailed granularity.

Class-to-GPS Mapping

Based on the predicted class of the given query image, we
determine the GPS coordinates for the query image. We
calculate the mean coordinates of all training images within
the predicted region rather than relying on the geographic



center. For instance, consider a region that contains both an
ocean and a city near its boundary, if were were to use the
geographic center as the predicted location, it would likely
fall somewhere in the ocean, far from the actual area where
most photos were taken.

3. Results

3.1 Experimental protocols

For hierarchical spatial partitioning, the Earth's surface was
divided into region nodes at multiple spatial resolutions
(coarse, medium, fine) using the S2 geometry library. Sparse
region nodes (those with fewer than a minimum threshold of
images) were excluded to enhance classification precision.

Then we used a pre-trained ResNet model (trained on the
Places?2 dataset) for multi-partitioning learning to assign
hierarchical scene labels(indoor, natural, urban) and set
stochastic gradient descent with an initial learning rate of
0.01, momentum of 0.9, and weight decay of 0.0001. For
augmentation, we performed random cropping and flipping
of images to 224x224 pixels. Finally, we used a subset of
25,600 images from the YFCC100M dataset for validation
during training.

3.2 Training and test data

For training data, we used a subset of the Yahoo Flickr
Creative Commons 100 Million dataset (YFCC100M) [13],
containing approximately 4.72 million geo-tagged images.

To evaluate the effectiveness of the proposed framework, for
test data, we use the IM2GPS Test Set, which consists of 237
images from diverse locations worldwide. This dataset is a

mix of recognizable landmarks and generic scenes. To further

evaluate, we used a larger Im2GPS3k testset with 3,000
geo-tagged images(more diverse and challenging
benchmark).

3.3 Example output

The Figure 5 table provided represents a sample of the output
generated by our model, where we predict geographical
coordinates (latitude and longitude) for given images. Each
row includes the following:

img_id: The unique identifier for an image, which combines
its Flickr ID and user information.

pred_lat: The latitude predicted by our model.

pred_Ing: The longitude predicted by our model.

For instance, the first row corresponds to an image with the
ID 104123223 7410c654ba 19 19355699@N00. For this
image, our model predicts a latitude of 32.7313 and a
longitude of -117.154, which places it near San Diego,
California. Similarly, the predictions for the other rows align
with their respective IDs.

By analyzing this output, we can validate the performance of
our model in estimating geolocations based on visual features
extracted from images. This table provides clear evidence of
how our approach operates on diverse data and showcases the
precision of our predictions.

img_id pred_lat pred_Ing
104123223 7410c654ba_19

__19355699@N00 327313 -117.154
1095548455 f636d22cbb_12

77_8576809@MN0OS 32 79269 -90 .87
1185597181_0158ab4213_13

11_43616936@MNO0 42 34779 -71.086
1199004207_0OcedeTad56_ 12

85_16418049@MN0O0 36.0611 27.18043
1257001714 _3453f5fcdb_14

05_11490799@N08 454119 -75.7143

Figure 5. Sample of the output generated by our model
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Figure 6. Accuracy of single resolution(basic predictor) versus
multi-scale learning framework(with scene-aware context
integration) across varying GCD thresholds (1 km to 2,500 km).



3.4 Evaluations

As part of the evaluation for the location prediction
framework, we conducted a performance comparison
between the Single-Resolution Classification (Basic
Predictor) and the Hierarchical Multi-Scale Framework. The
results of this analysis are presented in Figure 6.

The basic predictor performs slightly better at smaller
thresholds (e.g., 1 km: 9.3% vs. 8.9%), likely because its
single-resolution design focuses on localized features without
interference from broader-scale integration when there are
conflicts between predictions across scales (e.g., when coarse
and fine scales produce divergent results). However, as the
thresholds increase (200 km and beyond), the hierarchical
multi-scale framework outperforms the basic predictor by a
huge amount, achieving 87.4% accuracy at 2500 km
compared to 65.8%. This demonstrates that the hierarchical
framework is able to integrate features from multiple spatial
scales, enabling better generalization and capturing both
fine-grained and global patterns. On the other hand, the basic
predictor struggles at larger scales due to its limited focus on
a single resolution, while the hierarchical approach excels in
diverse and complex geolocation scenarios.

We also analyzed the geographical error distribution of our
model using the im2gps and im2gps3k datasets. The
im2gps3k dataset is more diverse, covering a broader range
of geographical regions compared to the im2gps dataset,
which primarily focuses on urban areas. For example, while
im2gps includes approximately 1,000 images predominantly
from North America and Europe, im2gps3k extends to 3,000
samples, adding significant representation from Asia, Africa,
and South America. This increased diversity provides a more
challenging and comprehensive test for our model.

The results are visualized in the maps below(Figure 7.& Figure
8), where the color intensity and size of the markers
correspond to the error distance in kilometers. Redder and
larger markers indicate higher prediction errors. From the
im2gps dataset shown as Figure 7. We observed that the
majority of the predictions had relatively small error
distances, concentrated in regions with high-density data
points such as North America and Europe. However, there
are some significant outliers, particularly in areas where the
ground-truth locations are underrepresented in the training
data. For example, certain regions in Africa and South
America show higher errors due to the lack of similar visual
features in the dataset.

When evaluating on the larger im2gps3k dataset shown as
Figure 8, we noticed a similar pattern in error distribution.
Regions with higher dataset density, such as urban areas and
tourist hotspots, tend to have lower error distances. In
contrast, sparsely sampled regions exhibit larger errors. The
extended dataset, however, allows the model to generalize
better in some underrepresented areas, reducing error
magnitudes compared to the smaller dataset.
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Figure 7. Geographical Error Distribution in im2gps dataset
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Figure 8. Geographical Error Distribution in im2gps3k dataset

To further evaluate our model’s performance, we analyzed
the best and worst prediction results in both the im2gps and
im2gps3k datasets. Below are the observations based on
distance error calculations for specific examples.

In both datasets, the top five best predictions demonstrate
that our model can achieve highly accurate geolocation
estimates, with errors as low as a few meters. In the im2gps
dataset(Figure 9), the prediction for an image in Paris
(Paris_00131) resulted in a negligible distance error of
0.0358 km, showcasing the model’s capability to recognize
prominent landmarks.Similarly, in the im2gps3k
dataset(Figure 11), the best predictions have minimal errors,
often under 1 km, which aligns well with urban environments
and well-documented regions.



The worst predictions highlight the limitations of our
approach.For the im2gps dataset(Figure 10), images from
Ecuador (Ecuador_00016) and other underrepresented
regions exhibited significant errors exceeding 15,000 km,
suggesting difficulty in identifying less-distinctive visual
features.In the im2gps3k dataset(Figure 12), the largest errors
were similarly pronounced, with outliers such as 322234321
showing a distance error of over 19,000 km. These failures
often occurred in regions with ambiguous visual cues or low
representation in the training set.

img_id Real Lat | Real Lon | Pred Lat | Pred Lon Distance
error(Km)
Paris_00131 48.86313(2.336654 | 48.8633 | 2.336193| 0.038524344
Spain_00083 37.38902 [ -5.99407 | 37.38831| -5.99432 |  0.082086451
Paris_00005 48.85372(2.347738 | 48.85245 | 2.348827 |  0.162082434
429777514 41.40349 | 2.174423 | 41.40487 | 2.173752 0.163132996
97344248 41.39535|2.169113 | 41.39423 | 2.167114 0.208107603

Figure 9. Best 5 result as distance in im2gps dataset

img_id Real Lat | Real Lon | Pred Lat | Pred Lon E[::ztf("l(‘;me)
779600060 734.9403 | 138.5856 | 42.35726 | 71.0666 |  17327.06
Ecuador 00016 | 0.06744 | 77.764 | 13.1608 | 130.7576|  16499.29
Bangkok_00011 | 9.376241|99.94001 | -23.1482 | -44.5663 15043.9
453214262 3552143 | 111373 | 26.2885 | 1156978| 154615
522546192 14,6667 | 145.4485 | 28.00119 | 77.606 15342.06

Figure 10. Worst 5 result as distance in im2gps dataset

img_id Real Lat | Real Lon | Pred Lat | Pred Lon e[::ztf("Kcme)
230313636 40.74872 | -73.9861 | 40.74852 | 73.986 0.022476
285425202 4543906 | 12.32507 | 4543991 | 12.3261 0.0295
872673086 40.75763 | -73.9857 | 40.75753 | 73.986 0.041704
207480819 5150747 | -0.12795 | 51.50728 | -0.12726 0.05277
266531088 37.80855 | 122.41 | 37.80007 | -122.41 0.058039

Figure 11. Best 5 result as distance in im2gps3k dataset

img_id Real Lat | Real Lon | Pred Lat | Pred Lon e[::ztf“'lcme)
322343421 37.76312 | 253413 | 42.3033 | 147.0788| 1919044
447024764 126119 | 69.0372 | 5.400650 | 116.7332| 18094 11
304304112 5147061 | 0.2123 | 43.408 |172.7573| 1897537
123607970 1286665 | 103.8387 | 8.990037 | -79.7476 |  18805.26
377436986 13.44364 |99.08322 | 17.4901 | 69.4843 |  18800.34

Figure 12. Worst 5 result as distance in im2gps3k dataset

The error distribution in the im2gps dataset(Figure 13) shows
a median error below 1,500 km, but the mean error (2,122.52
km) indicates the presence of significant outliers.

The first quartile (Q1) error of 9.44 km and third quartile
(Q3) error of 1,484.94 km demonstrate that most predictions

are within reasonable bounds, with the majority of errors
clustering below 2,500 km.

The mean error of 3,117.00 km of the error distribution in the
im2gps3k dataset(Figure 14) is higher than that of the im2gps
dataset, reflecting the increased diversity and complexity of
the larger dataset.

The Q1 and Q3 range (28.25 km to 3,542.57 km) indicates a
broader spread in error distances, with the model struggling
more in sparsely populated or visually ambiguous regions.
This indicates that our model performs well in the majority
dataset; however, some extreme test data become a burden in
the average results. We will dive into data that don’t perform
well in the next part’s discussion.
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Figure 13. Distribution of Distance Error in im2gps dataset
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Figure 14. Distribution of Distance Error in im2gps3k dataset
4. Discussion and conclusions:

4.1 Main Insights and Observations

Accurate Predictions in Urban and Iconic Regions:

Urban landmarks or areas with well-recognized features(e.g.,
North America and Western Europe) perform better, while
regions with less frequent representation in the dataset (e.g.,
Africa, South America, and the Pacific Islands) consistently
produce larger errors. This reflects a bias in the training data
distribution and highlights the need for more balanced global
datasets.

Extreme Mispredictions:



The largest errors exceeded 15,000 km, where predictions
landed in completely opposite areas. For example: an image
in South America was mistaken for a location in Australia.
These extreme mispredictions suggest that certain images
lack sufficient identifiable geographic features, leading the
model to perform poorly.

Patterns in the Errors:
We observed that errors are often influenced by longitude
mismatches, with predictions occasionally jumping across
continents or oceans. Generic natural landscapes like forests,
beaches, and mountains are more challenging, since they may
look similar to many other parts of the world. Similar
weather, plants, and landscape across different countries can
also mislead the model; for instance, certain plants in Alaska
and siberia in Russia can appear quite alike, causing
confusion. For example, in Figl5, our model can specify the
image is in high latitude due to the snow and guess the
latitude is 41.142337, with 44.16537094 as the correct
answer. However, our model is struggling in guessing which
guess is -73.236408, while the real location is -110.9542847.
We can find out that most of the error comes from the
mismatch of longitude.
e _—

Figl5. image 425947697 _ecb480e925_157_15376845@N00

Impact of Dataset Scale and Coverage:

The im2gps3k dataset demonstrates a higher mean error
(3,117 km) compared to the im2gps dataset (2,122 km).

This indicates that as datasets scale and include more diverse
and challenging examples, the model struggles to generalize
effectively.

Actual Accuracy:

Just as quartile information shown in Figl3, we got only 200
km distance error in median while 2122 km mean distance
error. We can say that the mean result was encumbered by the

extreme misprediction which seldom contained information
in the picture as shown in Figure 16.

Figure 16 . The worst 5 results as distance.

4.2 Potential Solutions

Improving Model Generalization:

Train the model on a more geographically balanced dataset to
address regional biases. Include more images from
underrepresented areas like Africa, South America, and
remote Pacific Islands. Apply ensemble models that combine
predictions from multiple networks trained on different scales
or features, improving accuracy and consistency in
challenging cases.

Handling Ambiguous Images:

We can enhance geographic predictions for natural
landscapes by integrating climate-based features such as
vegetation indices (NDVI, EVI), elevation data, and climate
zones into our model. These features can be extracted from
datasets like MODIS and SRTM and represented as
additional vectors. By combining them with visual features
from a CNN in a multi-input neural network, we can create a
more context-aware framework. Additionally, we can
develop specialized modules for unique patterns like
coastlines or deserts. This approach can improve predictions
in visually similar or underrepresented regions, making the
model more accurate and scalable across diverse landscapes.

Addressing Extreme Errors:

Mark out predictions that are geographically unlikely. For
example, large jumps across hemispheres could trigger extra
validation steps. Implement confidence scoring: Have the
model output a confidence score for each prediction,
allowing uncertain predictions to be handled differently.



5. Connection to course material:

Our projects builds on several foundational concepts covered
in the course, which directly ties to the lectures and
techniques as:

Preprocessing:

At the beginning ,we need to process it in a way that makes
its features easier to analyze. This involves steps like
sampling, filtering, and edge detection. Which directly relates
to the lectures on September 4 and 6 (Image Filtering), and
September 18 (Edge Detection) and helps us organize it into
a hierarchical geo-classification structure which we’ve
learned in this lecture. Moreover, skills like Fourier
transforms(Fourier analysis in Sept. 6 & 11) and interpolation
(Image processing in Aug. 30) help us ensure images with
different sizes and resolutions can be compared correctly.

Feature Extraction:

After preprocessing, we look for unique features that can
guide us toward an image’s geographical location. This is
where methods like corner detection(Corner detection Sept.
20) and SIFT(SIFT keypoint detection in Sept. 25 & SIFT in
Assignment 3) which were taught in class can help. SIFT
allows us to find and match distinctive landmarks across
images and solve problems of multi-resolution inputs and
inputs of different scales.

Spatial Relationships:

Once we’ve extracted the features, we need to understand
how they relate to one another in space. Accurately placing a
new image into a set of known geographical regions involves
applying spatial transformations. Techniques like affine
transformations(Alignment Oct. 9) and image warping help
us align images correctly and refine the overall hierarchy of
classifications..

6. Statement of individual contribution:

Sophie Huang: contributed to dataset collection,
implemented adaptive region partitioning, integrated
scene-aware context classification, and collaborated on
developing Context-Specific Networks.

Kathy Lo: worked on dataset collection and preprocessing,
implemented the multi-scale learning framework,
collaborated on Context-Specific Networks, and assisted with
debugging

Chia-Chun Hsiao: focused on hierarchical geolocation
prediction and evaluation. She contributed to scene
classification integration and provided significant input for
the report’s methodology sections.

Yu-Han Huang: managed experimental protocols, including
testing, performance evaluation, and result visualization. He
also contributed to integrating scene-aware context
classification.

Kai-Po Chang: supported model testing and evaluation,
analyzed quantitative results, and assisted with debugging.
He also contributed to the multi-scale learning framework
and the final hierarchical geolocation prediction step.
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