
Capstone Project Final Report - SLB 

ABSTRACT 

For the capstone project, we have developed a cross-platform application (iOS, Android, and 
web) that employs QR-code technology to streamline asset tracking, task assignment, and 
inventory management. The system enables rapid, error-resistant identification of parts and 
products. The backend, built on PostgreSQL with RESTful APIs secured by JWT-based 
authentication, supports comprehensive part and product management, role-based access control, 
and a full borrowing/return workflow. Automated unit, integration, and stress tests, along with a 
CI/CD pipeline, ensure reliability and facilitate safe deployments. The Flutter-based frontend 
delivers a responsive UI featuring real-time scanning, manual code entry, history tracking, and 
bulk QR-code generation from Excel inputs. Performance evaluations demonstrate high scanning 
accuracy and significant reductions in manual errors. This integrated solution enhances 
operational visibility, accelerates asset workflows, and lays the foundation for future data-driven 
optimizations and predictive inventory analyses. 

1. Introduction  

In response to the growing complexity of internal logistics management, SLB Company has 
commissioned the development of an application in the three end (iOS, android and web) to 
streamline inventory tracking and task allocation. The proposed system uses QR code technology 
to label and manage physical assets within the company. Each item will be tagged with a unique 
QR code, which encodes essential information such as item category, ID, tasker, and location. 
The app will greatly help employees to check the status of items and future data analysis. 

 

2.  Literature Review 

2.1 QR codes 

QR codes have emerged as an effective tool for asset identification and tracking due to their ease 
of use, cost-effectiveness, and ability to store substantial data  [1]. Unlike barcodes, QR codes 
can store more information, including URLs, text, and metadata, making them suitable for 
inventory management applications. 

Research indicates that QR code-based tracking systems improve accuracy in asset management 
by reducing human errors associated with manual data entry [2]. Additionally, QR codes 
facilitate quick scanning via mobile devices, enabling real-time updates and seamless integration 
with cloud databases [3]. 

In this case, we decide to use QR codes as identification for different items. The international 
standard will be ISO and input information will be restricted to text digits without bit limitation. 

 

2.2 Three end solutions 

1 



The adoption of cross-platform applications (iOS, Android, and web) in logistics management 
has grown due to their accessibility and scalability [4]. Cloud-based systems enable centralized 
data storage, allowing multiple users to access and update information simultaneously 
[5].Furthermore, web-based dashboards facilitate data analysis, helping organizations derive 
insights for better decision-making. 

Hence, portable and efficient three end application is what we strive for. We have realized the 
application deployment on iOS and Android systems. Web applications will be uploaded in the 
future. 

 

2.3 Inventory management 

Inventory management is a critical aspect of logistics, ensuring that resources are tracked, 
allocated, and utilized efficiently. Traditional manual systems are prone to errors, leading to 
inefficiencies in stock management [6]. Automated inventory systems, particularly those 
integrated with mobile technology, have been shown to significantly improve accuracy and 
reduce operational costs. 

We are aimed at making inventory management automatic and intelligent, and reduce manual 
operations to meet more B2B demands, including task assignments and clear clients control. 

 

3 Work completed 

3.1 Backend 

The backend architecture is designed to support a scalable and secure service ecosystem 
deployed on an Azure Virtual Machine. At the foundation, the system uses PostgreSQL as the 
primary relational database to store and manage all persistent data. This includes structured data 
related to employees, products, and user operation logs. 

Above the database layer is a Service Layer running on the Azure VM, which encapsulates core 
backend functionalities. This layer is responsible for handling business logic and includes several 
major components, and detailed information will be introduced in following sections. 

These backend services are accessed by multiple frontend clients, including  iOS App and 
Android App. The system is modular, maintainable, and built to support further extensions as 
needed. 

 

2 



 

Figure1. Backend Structure 

3.1.1 User Authentication and JWT-based Authorization 
To secure the system and control access to various endpoints, we implemented a robust user 
authentication and authorization mechanism. Users register and log in through the /api/employee/ 
endpoint, and upon successful login, they receive a JWT. This token is required for subsequent 
API access, ensuring that only authenticated users can perform actions such as part creation, 
borrowing, or returning. 

Each user is associated with a user_type, allowing us to define roles (e.g., admin vs regular 
employee) and apply role-based access control throughout the application. This system 
guarantees that only authorized users can perform sensitive operations like deleting or modifying 
component and category data. 

 

3.1.2 Inventory Management and Part/Product Relationship 

Our backend provides a comprehensive inventory management system using RESTful APIs 
under the part-api and product-api groups. 

Part Management (/api/components) 

The Part entity represents individual hardware components and is managed via the following 
endpoints: 

●​ GET /api/components: Lists all components. 
●​ GET /api/components/{id}: Fetches details of a specific component. 
●​ POST /api/components: Adds a new part to the inventory. 
●​ PUT /api/components/{id} and DELETE /api/components/{id}: Allows editing and 

removal of parts. 

3 



Additional endpoints such as /returned, /borrowed, and /status/{status} allow filtering by usage 
and availability. 

Each Part is linked to attributes like part_number, borrowed_employee_id, status, and cost, 
which are critical for tracking availability and usage. 

Product Management (/api/categories) 

A Product in our system refers to a predefined bundle or category of parts. Through the 
following endpoints, users can manage product types and their associated parts: 

●​ GET /api/categories and GET /api/categories/{id}: Retrieve all products or one specific 
product. 

●​ POST /api/categories: Adds a new product definition. 
●​ PUT /api/categories/{id} and DELETE /api/categories/{id}: Update or remove product 

categories. 
●​ GET /api/categories/{id}/parts: Lists parts associated with a product. 
●​ GET /api/categories/name/{name}: Enables search by product name. 

Each Product is defined in the database with part_list, lead_time, and other attributes that support 
detailed tracking and planning for procurement or usage. 

The tight coupling between parts and products ensures accurate inventory records, especially 
during borrow and return operations. 

 

3.1.3 Borrowing and Returning Workflow 

We implemented an activity-api module to handle component stock-in, stock-out, borrow, and 
return operations. 

●​ POST /api/activities/stock-out: Marks parts as taken from the inventory. 
●​ POST /api/activities/stock-in: Restocks returned or new parts. 
●​ POST /api/activities/borrow: Logs when a user borrows a part, updating 

borrowed_employee_id in the Part table and writing an entry in Employee_activity. 
●​ POST /api/activities/return: Reverses the borrowing status, updates the Returned_part 

table, and removes the borrower ID from the part. 

All activities are recorded with timestamps (operate_time) and linked to employees and specific 
parts, making the system traceable and auditable. These operations are crucial for maintaining 
data consistency across tables such as Part, Returned_part, and Employee_activity. 

 

3.1.4 Automated Unit and Integration Testing 

We ensured the correctness and reliability of the backend through comprehensive unit and 
integration testing. 

4 



●​ Unit Tests: Targeted key service-layer logic, especially for activity logging and JWT 
token handling. 

●​ API Tests: Automatically tested core activity and user-related endpoints using mock 
requests and responses. 

●​ Multi-threaded Stress Testing: To simulate concurrent user activity, we implemented 
multi-threaded tests that perform simultaneous borrow/return requests. This revealed and 
helped mitigate potential race conditions, ensuring system robustness under load.​
 

These tests were crucial in verifying that the business logic, such as preventing double borrowing 
or overstocking, functions as intended. 

 

3.1.5 CI/CD Pipeline and Deployment Strategy 

To streamline development and ensure safe deployments, we implemented a full CI/CD pipeline: 

●​ Version Control: All code is managed via Git, with clear branching strategies for feature, 
test, and release versions. 

●​ Automated Testing: Tests are triggered automatically upon each commit to ensure that 
changes do not break existing functionality. 

●​ Deployment Automation: Using GitHub Actions (or a similar tool), code is automatically 
deployed to a staging server after passing all tests. 

●​ Environment Isolation: We clearly separated development/testing environments from the 
production environment. This avoids any interference between test data and live user 
operations.​
 

This workflow guarantees rapid iteration and minimizes the risk of introducing bugs to the 
production system. 

 

3.1.6 Database Design and Entity Relationships 

Our relational database schema models real-world interactions between employees, components, 
and products. Key aspects include: 

●​ Employee Table: Stores credentials and roles.​
Part Table: Tracks each hardware unit's availability and borrowing status. 

●​ Product Table: Defines part bundles or functional categories. 
●​ Employee_activity Table: Logs all actions with timestamps, supporting audit trails. 
●​ Returned_part Table: Specifically tracks part returns for reporting and validation 

purposes. Foreign keys and indexed attributes (such as employee_id and part_id) 
optimize query performance and ensure referential integrity. 

5 



 

Figure2. Database table design 

3.1.7 Data Analysis 

For the data analysis part, since we currently do not have real data available for analysis, we 
provided SLB with several machine learning approaches for data analysis as a reference. This is 
to give them an idea of which machine learning models they could use in the future if they wish 
to incorporate data analysis into their projects. 

 

Table 1. different machine learning approaches and their respective advantages and 
disadvantages. 

 

6 



 

Figure3. Example of data format 

 

3.2 Frontend 

 
3.2.1 Login and accounts 
 

We designed the login system to be secure and user-friendly. When users open the app, 
they are greeted with a clean login screen where they can enter their account and password to 
access the system. To enhance security, we apply a hash function on the frontend before sending 
any password data to the server. This ensures that raw passwords are never exposed during 
transmission. By hashing the password client-side, we add an extra layer of protection alongside 
HTTPS encryption. 

Once users successfully log in, we fetch their profile data and store session tokens locally 
to maintain their login state as they navigate through the app. Our system supports role-based 
access control, which allows us to assign different permissions based on user type. For example, 
Admins can add, edit, and delete employee records, while regular users have view-only access. 
In the Accounts section, we display a searchable list of all employees. Users can select an 
employee to view detailed information like ID, name, department, and role. This section helps us 
keep our team organized and ensures easy access to contact or administrative information. 

To prevent accidental data loss, we implemented a pop-up confirmation message before 
any delete action. When an Admin taps the delete button on an employee record, a modal dialog 
appears asking the user to confirm the deletion. This extra step ensures that deletions are 
intentional and gives the user a chance to cancel the action if it was triggered by mistake. 
All changes—including deletions—are immediately synced with the backend, ensuring our 
records remain accurate and up to date. 

 

 

7 



                   

Figure4. Login account and employee details 

 
3.2.2 Homepage and inventory management 
 

The homepage is designed as an expandable scrolling list and displays useful information 
like user activity and notifications. To streamline navigation, we integrated a sidebar menu. The 
sidebar includes essential links such as Inventory and Admin, allowing users to move quickly 
between core features. Its minimalist layout and icon-based design help maintain a clean 
interface while ensuring usability. The sidebar also adapts based on the user’s role—Admin users 
will see additional links compared to regular users.  

 The inventory is implemented using multiple maps. SLB equipment is catalogued using 
a hierarchy of three levels: a product corresponds to multiple parts, and a part corresponds to 
multiple part numbers. As such maps are a natural way to associate products, parts, and part 
numbers as key-value pairs for quick look up.  

Several api protocols are needed. When the user returns to the home page from any other 
page, a query to the backend for user history is immediately initiated and the user history is 
updated. Similarly, upon navigating to the inventory page, a query to the backend for all the 
user’s currently borrowed parts is initiated and the user inventory is updated accordingly.  

8 



                

Figure5. Home page 

 

3.2.3 Scanner 

The QR code scanning feature was implemented using Flutter libraries such as 
barcode_scan, barcode_scan2, and camera. These libraries enable real-time image capture and 
processing. The scanner achieves high recognition accuracy. It can quickly and accurately detect 
QR codes as small as 0.5cm × 0.5cm, making it suitable for a wide range of use cases. Besides, 
in cases where scanning is not feasible, users can manually input QR codes for retrieval.  

 

                         

Figure6. Scanner page 

 

9 



For error handling, the app provides clear feedback for both successful scans and failed scans. 
For testing purposes, QR codes are encoded as no digit limitation numeric strings, where both 
the category ID and the part ID will be analysed and recorded. 

                                    

Figure7. Error handling in Scanner Page 

The scanner pages also show the clear navigation. Users can easily return to the homepage after 
scanning or manual input.  As long as you click “borrow”, the item will be checked in. And after 
clicking “return”, the item will be checked out. Two statues can be easily viewed and 
transformed. Click “history” and all control records will be displayed.  

                        

Figure8. Scanner History 

  

10 



3.2.4 QR code generator 

The application integrates a QR/barcode generator that allows users to create and print custom 
QR codes based on uploaded data (e.g., Excel files or CSV files). This feature streamlines asset 
labeling, inventory tracking, and task management by automating code generation and ensuring 
compatibility with different printing formats. 

Users can upload .xlsx/.csv files containing barcode data (e.g., item ID, category, location, 
tasker). The system auto-generates QR codes by extracting data from specified columns. Also, 
the app tracks the local storage path of generated QR codes for easy retrieval. Users can export 
QR images in multiple print formats, including line spacing, the number of printed barcodes per 
row, column width, margins and other properties. 

                           

Figure9. QR code generator 

 

4. Summary and Conclusions 

In summary, we have implemented both the back end and front end of a mobile app for 
managing the engineering equipment that SLB uses. The front end is built through the flutter 
framework, which enables cross platform development for both iOS and Android. The backend 
is built through PostgreSQL.  

To have front-end and back-end integration, a large amount of effort was dedicated to 
creating and standardizing the api protocols supported by the server that the mobile app would 
need. Some of these endpoints are detailed in the report. The front-end communicates with the 
back-end through the http protocol and obeys the characteristics of the RESTful protocols, where 
the client(front-end) initiates communication with the server and the server stores no information 
about the client state.  

11 



More specific features about the front-end and back-end are detailed in the report. Some 
of the front-end features include inventory management, qr-code/barcode scanner, employee and 
part management, and qr-code generator. Features of the backend include a full CI/CD pipeline 
for automated testing and automated deployment.  

 

5. Suggestions for Future Work 

While we have completed the necessary features for basic cataloguing and tracking of 
equipment, there are additional features especially in data analysis that would be useful to 
implement. Seeing as we had no prior history for how individual parts were used, we could not 
accurately use more advanced data analysis techniques such as machine learning. In the future, if 
we had access to how different parts were used over time, we would use the data to train more 
accurate models for predicting part usage.  

 

6. Group Members 

Frontend Team: 
NetID Name 

allenp2 Allen Peng 

yutaots2 Yu-Tao Sun 

shiyul4 Shiyu Liu 

chihyuh3 Sophie Huang 

ch115 Chia-Chun Hsiao 

yhchen6 Yuan-Hao Chen 

 

Backend Team: 
NetID Name 

mingyi5 MingYi Wei 

yl191 Yujiang Liu 

feng45 Jingting Feng 

qijing3 Qi Jing 

zixuan41 Zixuan Shen 

12 



 

 

7. Bibliography 

[1] Huang W C, Tsai C C, Chen C L, et al. Glucosylceramide synthase inhibitor PDMP sensitizes 
chronic myeloid leukemia T315I mutant to Bcr‐Abl inhibitor and cooperatively induces 
glycogen synthase kinase‐3‐regulated apoptosis[J]. The FASEB Journal, 2011, 25(10): 
3661-3673. 

[2] Lin Y C, Cheung W F, Siao F C. Developing mobile 2D barcode/RFID-based maintenance 
management system[J]. Automation in construction, 2014, 37: 110-121. 

[3] Want R. An introduction to RFID technology[J]. IEEE pervasive computing, 2006, 5(1): 
25-33. 

[4] Hevner A R, March S T, Park J, et al. Design science in information systems research[J]. MIS 
quarterly, 2004: 75-105. 

[5] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the 
ACM, 2010, 53(4): 50-58. 

[6] Ngai E W T, Moon K K L, Riggins F J, et al. RFID research: An academic literature review 
(1995–2005) and future research directions[J]. International journal of production economics, 
2008, 112(2): 510-520. 

 

13 


	Capstone Project Final Report - SLB 
	3.1.1 User Authentication and JWT-based Authorization 


