Capstone Project Final Report - SLB
ABSTRACT

For the capstone project, we have developed a cross-platform application (i10S, Android, and
web) that employs QR-code technology to streamline asset tracking, task assignment, and
inventory management. The system enables rapid, error-resistant identification of parts and
products. The backend, built on PostgreSQL with RESTful APIs secured by JWT-based
authentication, supports comprehensive part and product management, role-based access control,
and a full borrowing/return workflow. Automated unit, integration, and stress tests, along with a
CI/CD pipeline, ensure reliability and facilitate safe deployments. The Flutter-based frontend
delivers a responsive Ul featuring real-time scanning, manual code entry, history tracking, and
bulk QR-code generation from Excel inputs. Performance evaluations demonstrate high scanning
accuracy and significant reductions in manual errors. This integrated solution enhances
operational visibility, accelerates asset workflows, and lays the foundation for future data-driven
optimizations and predictive inventory analyses.

1. Introduction

In response to the growing complexity of internal logistics management, SLB Company has
commissioned the development of an application in the three end (iOS, android and web) to
streamline inventory tracking and task allocation. The proposed system uses QR code technology
to label and manage physical assets within the company. Each item will be tagged with a unique
QR code, which encodes essential information such as item category, ID, tasker, and location.
The app will greatly help employees to check the status of items and future data analysis.

2. Literature Review
2.1 QR codes

QR codes have emerged as an effective tool for asset identification and tracking due to their ease
of use, cost-effectiveness, and ability to store substantial data [1]. Unlike barcodes, QR codes
can store more information, including URLSs, text, and metadata, making them suitable for
inventory management applications.

Research indicates that QR code-based tracking systems improve accuracy in asset management
by reducing human errors associated with manual data entry [2]. Additionally, QR codes
facilitate quick scanning via mobile devices, enabling real-time updates and seamless integration
with cloud databases [3].

In this case, we decide to use QR codes as identification for different items. The international
standard will be ISO and input information will be restricted to text digits without bit limitation.

2.2 Three end solutions

The adoption of cross-platform applications (iOS, Android, and web) in logistics management
has grown due to their accessibility and scalability [4]. Cloud-based systems enable centralized
data storage, allowing multiple users to access and update information simultaneously
[5].Furthermore, web-based dashboards facilitate data analysis, helping organizations derive
insights for better decision-making.

Hence, portable and efficient three end application is what we strive for. We have realized the
application deployment on iOS and Android systems. Web applications will be uploaded in the
future.

2.3 Inventory management

Inventory management is a critical aspect of logistics, ensuring that resources are tracked,
allocated, and utilized efficiently. Traditional manual systems are prone to errors, leading to
inefficiencies in stock management [6]. Automated inventory systems, particularly those
integrated with mobile technology, have been shown to significantly improve accuracy and
reduce operational costs.

We are aimed at making inventory management automatic and intelligent, and reduce manual
operations to meet more B2B demands, including task assignments and clear clients control.

3 Work completed

3.1 Backend

The backend architecture is designed to support a scalable and secure service ecosystem
deployed on an Azure Virtual Machine. At the foundation, the system uses PostgreSQL as the
primary relational database to store and manage all persistent data. This includes structured data
related to employees, products, and user operation logs.

Above the database layer is a Service Layer running on the Azure VM, which encapsulates core
backend functionalities. This layer is responsible for handling business logic and includes several
major components, and detailed information will be introduced in following sections.

These backend services are accessed by multiple frontend clients, including 10S App and
Android App. The system is modular, maintainable, and built to support further extensions as
needed.

Dashboard ‘ ‘ 10S App ‘ ‘ Android App | Front End

‘ ‘ Admin

| JWT Authorization |

Main Management
System

Employee
User Operation)
History Service

| API Documentation |

Logging System

| Data Analysis Platform |

——
[——

postgreSQL Database/,r

Azure VM Cloud

Figurel. Backend Structure

3.1.1 User Authentication and JWT-based Authorization

To secure the system and control access to various endpoints, we implemented a robust user
authentication and authorization mechanism. Users register and log in through the /api/employee/
endpoint, and upon successful login, they receive a JWT. This token is required for subsequent
API access, ensuring that only authenticated users can perform actions such as part creation,
borrowing, or returning.

Each user is associated with a user_type, allowing us to define roles (e.g., admin vs regular
employee) and apply role-based access control throughout the application. This system
guarantees that only authorized users can perform sensitive operations like deleting or modifying
component and category data.

3.1.2 Inventory Management and Part/Product Relationship

Our backend provides a comprehensive inventory management system using RESTful APIs
under the part-api and product-api groups.

Part Management (/api/components)

The Part entity represents individual hardware components and is managed via the following
endpoints:

GET /api/components: Lists all components.

GET /api/components/{id}: Fetches details of a specific component.

POST /api/components: Adds a new part to the inventory.

PUT /api/components/{id} and DELETE /api/components/{id}: Allows editing and
removal of parts.

Additional endpoints such as /returned, /borrowed, and /status/{status} allow filtering by usage
and availability.

Each Part is linked to attributes like part number, borrowed employee id, status, and cost,
which are critical for tracking availability and usage.

Product Management (/api/categories)

A Product in our system refers to a predefined bundle or category of parts. Through the
following endpoints, users can manage product types and their associated parts:

e GET /api/categories and GET /api/categories/{id}: Retrieve all products or one specific
product.

e POST /api/categories: Adds a new product definition.

e PUT /api/categories/{id} and DELETE /api/categories/{id}: Update or remove product
categories.

e GET /api/categories/{id}/parts: Lists parts associated with a product.

e GET /api/categories/name/{name}: Enables search by product name.

Each Product is defined in the database with part list, lead time, and other attributes that support
detailed tracking and planning for procurement or usage.

The tight coupling between parts and products ensures accurate inventory records, especially
during borrow and return operations.

3.1.3 Borrowing and Returning Workflow

We implemented an activity-api module to handle component stock-in, stock-out, borrow, and
return operations.

o POST /api/activities/stock-out: Marks parts as taken from the inventory.

e POST /api/activities/stock-in: Restocks returned or new parts.

e POST /api/activities/borrow: Logs when a user borrows a part, updating
borrowed employee id in the Part table and writing an entry in Employee_activity.

e POST /api/activities/return: Reverses the borrowing status, updates the Returned part
table, and removes the borrower ID from the part.

All activities are recorded with timestamps (operate_time) and linked to employees and specific
parts, making the system traceable and auditable. These operations are crucial for maintaining
data consistency across tables such as Part, Returned part, and Employee activity.

3.1.4 Automated Unit and Integration Testing

We ensured the correctness and reliability of the backend through comprehensive unit and
integration testing.

e Unit Tests: Targeted key service-layer logic, especially for activity logging and JWT
token handling.

e API Tests: Automatically tested core activity and user-related endpoints using mock
requests and responses.

e Multi-threaded Stress Testing: To simulate concurrent user activity, we implemented
multi-threaded tests that perform simultaneous borrow/return requests. This revealed and
helped mitigate potential race conditions, ensuring system robustness under load.

These tests were crucial in verifying that the business logic, such as preventing double borrowing
or overstocking, functions as intended.

3.1.5 CI/CD Pipeline and Deployment Strategy
To streamline development and ensure safe deployments, we implemented a full CI/CD pipeline:

e Version Control: All code is managed via Git, with clear branching strategies for feature,
test, and release versions.

e Automated Testing: Tests are triggered automatically upon each commit to ensure that
changes do not break existing functionality.

e Deployment Automation: Using GitHub Actions (or a similar tool), code is automatically
deployed to a staging server after passing all tests.

e Environment [solation: We clearly separated development/testing environments from the
production environment. This avoids any interference between test data and live user
operations.

This workflow guarantees rapid iteration and minimizes the risk of introducing bugs to the
production system.

3.1.6 Database Design and Entity Relationships

Our relational database schema models real-world interactions between employees, components,
and products. Key aspects include:

e Employee Table: Stores credentials and roles.
Part Table: Tracks each hardware unit's availability and borrowing status.

e Product Table: Defines part bundles or functional categories.

Employee activity Table: Logs all actions with timestamps, supporting audit trails.

e Returned part Table: Specifically tracks part returns for reporting and validation
purposes. Foreign keys and indexed attributes (such as employee id and part id)
optimize query performance and ensure referential integrity.

Employee_activity Employee Returned_part

@ activity_id ® employee_id @ part_id

® action ® employee_name ® part_name
® product_id ® department @ return_time
® employee_id ® password @ borrow_employee_id
® operate_time ® user_type

@ part_id
—— A

Product Part

® product_id @ part_number

® product_name ® part_id

® number_part_in_stock ® part_name

@ total_cost @ borrowed_employee_id

® number_part_check out ® status

® lead time ® cost

® part_list

Figure2. Database table design
3.1.7 Data Analysis

For the data analysis part, since we currently do not have real data available for analysis, we
provided SLB with several machine learning approaches for data analysis as a reference. This is
to give them an idea of which machine learning models they could use in the future if they wish
to incorporate data analysis into their projects.

Feature / Model Linear Regression Decision Tree XGBoost
Support Non-Linear No Yes Yes
Patterns
Expect Accuracy Low to Medium Medium to High High
Scales with Simple datasets Need more time to Designed for
Datasets process large-scale data
Model Complexity Very Simple Moderate More Complex

Table 1. different machine learning approaches and their respective advantages and
disadvantages.

train_data = pd.DataFrame({
"daily_usage": ["1,2,5,4,3,2"],
"related_product_number": [2,2,2,2,2,21,

"number_department_usage": [3,3,3,3,3,3]

H

Figure3. Example of data format

3.2 Frontend

3.2.1 Login and accounts

We designed the login system to be secure and user-friendly. When users open the app,
they are greeted with a clean login screen where they can enter their account and password to
access the system. To enhance security, we apply a hash function on the frontend before sending
any password data to the server. This ensures that raw passwords are never exposed during
transmission. By hashing the password client-side, we add an extra layer of protection alongside
HTTPS encryption.

Once users successfully log in, we fetch their profile data and store session tokens locally
to maintain their login state as they navigate through the app. Our system supports role-based
access control, which allows us to assign different permissions based on user type. For example,
Admins can add, edit, and delete employee records, while regular users have view-only access.
In the Accounts section, we display a searchable list of all employees. Users can select an
employee to view detailed information like ID, name, department, and role. This section helps us
keep our team organized and ensures easy access to contact or administrative information.

To prevent accidental data loss, we implemented a pop-up confirmation message before
any delete action. When an Admin taps the delete button on an employee record, a modal dialog
appears asking the user to confirm the deletion. This extra step ensures that deletions are
intentional and gives the user a chance to cancel the action if it was triggered by mistake.

All changes—including deletions—are immediately synced with the backend, ensuring our
records remain accurate and up to date.

Employees Employee Detail

ID: 001
Name: Alice Johnson
Department: Engineering

Type: Admin

Add New Employee

Figure4. Login account and employee details

3.2.2 Homepage and inventory management

The homepage is designed as an expandable scrolling list and displays useful information
like user activity and notifications. To streamline navigation, we integrated a sidebar menu. The
sidebar includes essential links such as Inventory and Admin, allowing users to move quickly
between core features. Its minimalist layout and icon-based design help maintain a clean
interface while ensuring usability. The sidebar also adapts based on the user’s role—Admin users
will see additional links compared to regular users.

The inventory is implemented using multiple maps. SLB equipment is catalogued using
a hierarchy of three levels: a product corresponds to multiple parts, and a part corresponds to
multiple part numbers. As such maps are a natural way to associate products, parts, and part
numbers as key-value pairs for quick look up.

Several api protocols are needed. When the user returns to the home page from any other
page, a query to the backend for user history is immediately initiated and the user history is
updated. Similarly, upon navigating to the inventory page, a query to the backend for all the
user’s currently borrowed parts is initiated and the user inventory is updated accordingly.

4:38

Home Page Inventory

Menu

Recent Activity Products

B Inventory

@ Admin

Inventory

Notifications

1

Y

Figure5. Home page

3.2.3 Scanner

The QR code scanning feature was implemented using Flutter libraries such as
barcode_scan, barcode_scan2, and camera. These libraries enable real-time image capture and
processing. The scanner achieves high recognition accuracy. It can quickly and accurately detect
QR codes as small as 0.5cm % 0.5cm, making it suitable for a wide range of use cases. Besides,
in cases where scanning is not feasible, users can manually input QR codes for retrieval.

GOTH - @ R0 by
o

< Manual Input Scanner Page

Confirm

Figure6. Scanner page

For error handling, the app provides clear feedback for both successful scans and failed scans.
For testing purposes, QR codes are encoded as no digit limitation numeric strings, where both
the category ID and the part ID will be analysed and recorded.

Gl @ @0 = iy G2 @ B 2 % b, PREEE T @ B0 sty
3 o

Scanner Page Scanner Page Scanner Page

Start scanning barcode Start scanning barcode

Borrow Return Borrow Return

Manual Input Manual Input Manual Input

History History

History

Figure7. Error handling in Scanner Page

The scanner pages also show the clear navigation. Users can easily return to the homepage after
scanning or manual input. As long as you click “borrow”, the item will be checked in. And after
clicking “return”, the item will be checked out. Two statues can be easily viewed and
transformed. Click “history” and all control records will be displayed.

History (m]

1 107

o~

Return

Figure8. Scanner History

10

3.2.4 QR code generator

The application integrates a QR/barcode generator that allows users to create and print custom
QR codes based on uploaded data (e.g., Excel files or CSV files). This feature streamlines asset
labeling, inventory tracking, and task management by automating code generation and ensuring
compatibility with different printing formats.

Users can upload .xlsx/.csv files containing barcode data (e.g., item ID, category, location,
tasker). The system auto-generates QR codes by extracting data from specified columns. Also,
the app tracks the local storage path of generated QR codes for easy retrieval. Users can export
QR images in multiple print formats, including line spacing, the number of printed barcodes per
row, column width, margins and other properties.

f4zmmmmm @ﬁllﬂl‘@'ﬁ“Sé

Management S... EAE B IE%% E?%%
a E%& B
AR EEE EAE EE
= = LA
c o

input2.xlsx history-gr
e - 050 @Pﬂlﬂ EEE EAE

B 8B

d 0 a

Figure9. QR code generator

4. Summary and Conclusions

In summary, we have implemented both the back end and front end of a mobile app for
managing the engineering equipment that SLB uses. The front end is built through the flutter
framework, which enables cross platform development for both iOS and Android. The backend
is built through PostgreSQL.

To have front-end and back-end integration, a large amount of effort was dedicated to
creating and standardizing the api protocols supported by the server that the mobile app would
need. Some of these endpoints are detailed in the report. The front-end communicates with the
back-end through the http protocol and obeys the characteristics of the RESTful protocols, where
the client(front-end) initiates communication with the server and the server stores no information
about the client state.

11

More specific features about the front-end and back-end are detailed in the report. Some
of the front-end features include inventory management, qr-code/barcode scanner, employee and
part management, and qr-code generator. Features of the backend include a full CI/CD pipeline
for automated testing and automated deployment.

5. Suggestions for Future Work

While we have completed the necessary features for basic cataloguing and tracking of
equipment, there are additional features especially in data analysis that would be useful to
implement. Seeing as we had no prior history for how individual parts were used, we could not
accurately use more advanced data analysis techniques such as machine learning. In the future, if
we had access to how different parts were used over time, we would use the data to train more
accurate models for predicting part usage.

6. Group Members

Frontend Team:

NetID Name
allenp2 Allen Peng
yutaots2 Yu-Tao Sun
shiyul4 Shiyu Liu
chihyuh3 Sophie Huang
chl15 Chia-Chun Hsiao
yhchen6 Yuan-Hao Chen
Backend Team:
NetID Name
mingyi5 MingYi Wei
yl191 Yujiang Liu
feng45 Jingting Feng
qijing3 Qi Jing
zixuan4 1 Zixuan Shen

12

7. Bibliography

[1] Huang W C, Tsai C C, Chen C L, et al. Glucosylceramide synthase inhibitor PDMP sensitizes
chronic myeloid leukemia T315I mutant to Bcr- Abl inhibitor and cooperatively induces
glycogen synthase kinase-3-regulated apoptosis[J]. The FASEB Journal, 2011, 25(10):
3661-3673.

[2] Lin Y C, Cheung W F, Siao F C. Developing mobile 2D barcode/RFID-based maintenance
management system[J]. Automation in construction, 2014, 37: 110-121.

[3] Want R. An introduction to RFID technology[J]. IEEE pervasive computing, 2006, 5(1):
25-33.

[4] Hevner A R, March S T, Park J, et al. Design science in information systems research[J]. MIS
quarterly, 2004: 75-105.

[5] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the
ACM, 2010, 53(4): 50-58.

[6] Ngai E W T, Moon K K L, Riggins F J, et al. RFID research: An academic literature review
(1995-2005) and future research directions[J]. International journal of production economics,
2008, 112(2): 510-520.

13

	Capstone Project Final Report - SLB
	3.1.1 User Authentication and JWT-based Authorization

